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An analytical and computational study is presented on solution properties of 
strongly nonlinear vortex/wave interactions involving Tollmien-Schlichting waves, 
in boundary-layer transition. The longitudinal vortex part, i.e. the total mean flow, 
is governed by a three-dimensional vortex system but coupled, through an effective 
spanwise slip condition a t  the surface, with the accompanying wave part, so that 
both the vortex and the wave parts are unknowns. Terminal forms of the space- 
marching or time-marching problem are proposed first, yielding either a lift-off 
separation singularity or a strong-attachment singularity. Second, a similarity 
version of the complete system is addressed numerically and analytically. This leads 
to a number of interesting solution features as the typical wave pressure is increased 
into the strongly nonlinear regime. In particular, lift-off separation and attachment 
forms seem to emerge which are analogous with those proposed above. The flow 
developments beyond the terminal forms are discussed, together with the links of the 
work with recent computational results and, tentatively, with experimental 
observations including the creation of lambda vortices (as a form of lift-off 
separation). 

1. Introduction 
The present paper concerning laminar-turbulent transition describes a study of 

solution properties, and their interpretations, for strongly nonlinear vortex/wave 
interactions in cases where the nonlinear wave contribution is of the Tollmien- 
Schlichting (TS) type. The term ‘strongly nonlinear’ refers to effects of relative 
order unity on the total mean flow, locally or globally, so that the mean flow cannot 
be represented as a small perturbation of the original steady flow, say. This 
theoretical work follows on from the approximately simultaneous investigations by 
Smith & Walton (1989), Bennett, Hall & Smith (1991), Hall & Smith (1991) who 
consider strongly nonlinear interactions following on, in turn, from the weakly 
nonlinear vortex/wave-interaction studies of Hall & Smith (1988, 1989,1990), Smith 
& Blennerhassett (1992). In particular Smith & Walton (1989) describe a range of 
nonlinear vortex/wave interactions for various input amplitudes and spectra of 
three-dimensional disturbances to a boundary layer, culminating with the most 
powerful interaction which is the case of interest here: see below. Boundary-layer 
flows, and to a lesser extent channel and pipe flows, form the main focus, while 
Walton (1991) discusses special applications to entry flow in pipes. 

Vortex/wave interactions incorporating strong nonlinearity are of much interest 
from the theoretical and the experimental standpoints because they show how rather 
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tiny three-dimensional disturbances can affect the mean flow substantially as 
opposed to weakly. Indeed, such interactions and consequent mean-flow effects seem 
to have been observed experimentally e.g. in Swearingen & Blackwelder (1987), 
Aihara, Tomita & Ito (1985), Holden (1985). The potential power of longitudinal 
vortex/wave interactions is perhaps most easily seen in vortexIRayleigh-wave cases, 
which are presented by Hall & Smith (1991) for incompressible or compressible 
boundary layers. Thus a longitudinal vortex system (the mean flow) filling the entire 
boundary layer typically has spanwise velocities of order Re-4 times the free-stream 
speed (u,,,), where Re is the large global Reynolds number. The spanwise momentum 
force is therefore of order Re-h,2,f/l,,f for a streamwise lengthscale Ire,. If in addition 
a three-dimensional Rayleigh-wave disturbance is present its lengthscales are all of 
order Re-il,,, and so, if the disturbance velocity scale is a fraction K of uref, the 
contribution to the main spanwise momentum force produced inertially is 
K2u~,,/(Re-~l,,,). This suggests that the fraction K need be only O(Re4) for there to be 
a strongly nonlinear interaction. A detailed examination (Hall & Smith 1991 ; Brown, 
Brown & Smith 1992) accounting for the irregular solution response at  the critical 
layer then modifies the above finding slightly, showing that in fact K is O(Re-6). The 
main point, however, is that K need only be relatively tiny in practical terms, e.g. 
giving the approximate value of 0.01 % at Re = lo*. Thus, in a low-disturbance 
environment such an interaction provides a possible route to transition. Similar 
reasoning applies to the scales in vortex/TS-wave interactions. Accordingly, much 
work is in progress on the determination of vortex/wave interactions under various 
conditions. Yet, although a number of weakly nonlinear interactions have been 
addressed already (see references above), there appear to be very few firm results so 
far for strongly nonlinear interactions, and the latter’s solution properties and 
interpretations must still be regarded as largely unknown. This provides the 
motivation for the current study, which concerns certain exact solutions, their 
eruptive behaviour, and singularities, among other things. 

The applications of vortex/wave interaction theory are believed to be widespread, 
in addition to those mentioned above, as noted by Hall & Smith (1991) who also 
review some of the theoretical and practical aspects involved. Again, there are 
numerous types of strongly nonlinear vortex/wave interaction possible, and the 
present work applies to many of these in principle. Other strongly nonlinear theories 
relevant to transition are those of pressure-displacement nonlinear interaction 
(Smith 1979a, b,  1989, 1991 ; Hoyle, Smith & Walker 1991, 1992) and of Euler/high- 
frequency motions (Smith & Burggraf 1985; Smith & Stewart 1987; Smith, Doorly 
& Rothmayer 1990), but these arise for higher amplitudes of input typically, 
although there are connections between the three theories (see also $5  below) in terms 
of changes of scale with increasing time and/or distance, as reviewed by Smith (1991) 
for example. 

The governing equations consist of a three-dimensional vortex longitudinal system 
for the unknown mean flow coupled with a three-dimensional TS-type wave equation 
via an effective surface-slip condition. These are presented in $2 below, which also 
describes two types of finite-distance singularity that can occur in the solution in the 
spatial-marching context, cf. the Appendix. Following that, an exact solution of the 
governing equations of a similarity form is studied in $93, 4, analytically and 
computationally respectively, and the results are discussed further, compared and 
interpreted in $5,  where an interesting link between the similarity solutions and the 
finite-distance singularities of $2 is found to emerge. 

The work in $2 is guided by the brief suggestions in Smith & Walton (1989) and 
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is given in more detail by Walton (1991). The finite-distance singularities proposed 
are, first, of a lift-off separation type like those considered in other contexts by 
Sychev (1979), Simpson & Stewartson (1982a, b ) ,  Elliott, Cowley & Smith (1983), 
Cebeci, Stewartson & Schimke (1984), and others, but in three-dimensions here ; and, 
second, of a strongly attaching-flow type, localized in the spanwise coordinate. The 
former type is also reconsidered for the temporal-marching context in the Appendix, 
where a similar lift-off solution behaviour is found. The lift-off separation of the 
vortex flow is brought about by the tripping action of the surface-slip effect (referred 
to earlier) which acts in the azimuthal direction; without this slip, i.e. without the 
wave present, the vortex flow would probably stay attached for most practical 
starting conditions and approach a two-dimensional state far downstream, in the 
spatial setting. Locally, the separation singularity in particular is largely independent 
of the wave pressure-displacement law, with the flow structure here bearing 
resemblance to the lift-off or eruption of lambda vortices that has been observed 
experimentally during boundary-layer or channel-flow transition. 

The link between $2 and $5  mentioned earlier in this paragraph is that analogous 
singularities appear to arise in the nonlinear similarity solutions. Further, we observe 
that spanwise periodicity is imposed for convenience in the nonlinear similarity 
study ($$3,4) but this is not necessary in general and in fact the entire nonlinear 
vortex pattern could move about in the spanwise direction; in line with that, the 
separation-like and attachment-like singular behaviour possible in the similarity 
results does not necessarily happen along the particular symmetry lines imposed but 
in between. Section 5 also discusses the main follow-on from the separation 
singularity, namely that local nonlinear pressure-displacement interaction with the 
outer flow enters play next. This inner-outer interaction leads, in the spatial- 
temporal setting, to the breakup singularity of Smith (1988) and thence to local 
vortex formation, which Hoyle et al. (1991,1992) associate with the occurrence of the 
so-called ‘first spike ’ in fully fledged transition (although there are other explanations 
suggested for this spike). Further, recent comparisons by Smith & Bowles (1992) 
show close quantitative agreement with the experiments by Nishioka concerning the 
first spike. 

The flow structure for the vortex/TS-wave interaction studied here is given in 
figure 1, for the boundary-layer case on a flat surface. The velocities (u,,v,,w,), 
corresponding Cartesian coordinates (x,, y,, z,) (streamwise, normal, spanwise), and 
time (t,) are non-dimensionalized with respect to the references values uree, Zref, 
Iref/uref, in turn, the pressure p ,  with respect to and Re = Ureplref/V, where p,  
v are respectively the density and kinematic viscosity of the fluid, which is assumed 
incompressible in the present applications. The flow field is multi-structured (Smith 
& Walton 1989; Hall & Smith 1991), with a mean-flow correction of relative order 
(h-2/ln h) present within the O(Re-g)-thick lower deck of the triple-deck structure 
necessary for the TS wave. Nonlinear forcing by the small-amplitude waves results 
in the spanwise mean-flow correction growing logarithmically with distance from the 
surface. This leads to the formation of a buffer zone between the lower deck and the 
main portion of the O(Re-i)-thick boundary layer. In this buffer zone y, = Re-ghy, 
2,-constant = Refh3x, 2, -constant = Re%, and 

[u,, v,, w,,] = [Re-ahu, Re-th-lv, Re-ih-2w] (1 .1)  

to leading order, with the vortex timescale being t, = Re-ih2t. Here the parameter h 
lies between O( 1 )  and O(Rei). If h is reduced to order unity then the full triple-deck 
nonlinear interaction is provoked, whereas if h is increased to order Re; the 
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FIQWRE 1.  Schematic diagram of the flow structure for the vortex/Tollmien-Schlichting interaction. 
(a) Streamwise section showing the travelling three-dimensional TS wave structure (triple deck), 
in dashed lines, and the main vortex structure which is elongated and involves a buffer region. ( b )  
Sketch of the flow (vortex system plus three-dimensional waves), indicating the proposed lift-off 
separation and the strong attachment downstream : see §$a, 5. 

longitudinal vortex motion occupies the whole boundary layer. With 1 Q h 4 Re;, in 
contrast, the form (1.1) substituted into the Navier-Stokes equations leads to  a 
vortex system in the buffer zone, as given in the next section. 

Along with ( l . l ) ,  the TS-wave component of the total flow has the three- 
dimensional triple-deck character, with typical pressure am litude level p ,  of order 
Re-fh-’ times a logarithmic factor and timescale of order Re-*. Nonlinear effects from 
the wave inertia then produce a forcing constraint proportional to amplitude-squared 
on tbe vortex system, in the earlier-noted form of a spanwise slip velocity, in effect, 
at the bottom of the buffer zone. The corresponding forcing on the wave system 
occurs through the vortex surface-shear distribution (A ,  below) which appears in the 
coefficients of the wave equation, thus inducing strongly nonlinear interaction 
between the mean-flow vortex and the wave. Similar formulations hold in other 
applications. The resulting vortex/wave equations are presented in (2.1 a-Z) below, 
with the scaled vortex shear A, and the scaled wave pressure p and negative 
displacement A all being unknowns. 

P 

2. Vortex/wave interaction equations, and finite-distance singularities 
The vortex flow is governed by the three-dimensional boundary-layer equations 

au av aw 
a x  ay a2 
-+-+- = 0, (2 . la )  

(2.1 b)  
au au au au a2u 

at ax ay aZ ay2 
-+u-+v-+w-=---, 
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aw aw aw aw asw 
at ax ay aZ ayz’ 
-+u-+v-+w-=- 

together with the boundary conditions 

au --+ 1, w-o as y-too, 
aY 

(2.14 

(2 . id ,  e )  

and coupled with the TS wave pressure equation 

where the pressure-displacement law has been written in the general form A = X ( p )  
and the asterisk in (2 . lg)  denotes the complex conjugate. This law can be derived 
from the solution in the upper deck (where y = Re-9) of the Helmholtz equation 

subject to the conditions (2.1i) 

and p bounded at  infinity, in our specific case. The absence of pressure-gradient 
terms in (2.1 b,  c) is because the vortex pressure is found to be negligible at  leading 
order (Smith & Walton 1989). The functions P, ’3 are defined by 

(2.11, m) 

where Ai denotes the Airy function and the wavenumber a and the frequency 52 must 
both be real. Starting conditions, at  x = 0 say for the spatial case @/at = 0) ,  are also 
assumed. 

The solution of the vortex/wave interaction system (2.1) is a computational 
problem in general and a complex and time-consuming one at that (e.g. see Hall & 
Smith 1991). Extra insight may be gained by examining possibilities for the ultimate 
downstream form. In  this section we consider two such possibilities for the nonlinear 
interaction with a/at = 0 in (2.1), both of which take the form of finite-distance 
singularities (a third which is considered in $3  is found to have connections with the 
present two). The first of these (§2.1), in which the local flow remains fully three- 
dimensional, is governed primarily by inviscid dynamics and results in the formation 
of a relatively large ‘separation’ region which thickens in singular fashion as some 
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finite x-station is approached. In  this region, the magnitude of the streamwise flow 
is greatly reduced in comparison with that in the adjacent layers, where the velocity 
profiles are dependent upon the flow history. I n  contrast, the second possibility, 
considered ($2.2), in which the predominant flow is in the cross-stream direction, 
results in a strong ‘attachment’ of the boundary layer with the skin friction 
becoming singular a t  a finite distance downstream. 

For convenience, the work in the rest of this section is in terms of the flow solution 
near a symmetry line z = z,, where we assume the spanwise velocity to pass through 
zero, although this can be generalized later ( $ 3 3 4 ) .  Thus the solutions must assume 
the local form 

[U,V,Wl = [ , w , Y ) , ~ ( ~ , Y ) ,  ( z - - o ) W x ,  y)1(1 + W - z , ) ) ,  (2.2~) 
p =p~(x)+(z-zo)2p2(x)+ ..., (2.2b) 

z = @(x)+O(z-z,). (2.2c) 

In  this case the governing equations above reduce to 

(2 .3a,  b) 

( 2 . 3 ~ )  

with E+I, m+o as y+co, (2 .3d ,  e) 
aY 

where C.C. denotes complex conjugation and the TS pressure equation now takes the 
form 

2p2 - azpo = 92 (2 .3h)  

(Q is 3 with h, (unknown) replacing A,). This system poses a far less formidable 
problem than the full set (2.1), both computationally and analytically. 

2.1. The Jinite-distance separation singularity 
An intriguing possibility is that  the interaction results in a three-dimensional 
separation singularity at a finite station x = x,, say, downstream. For simplicity, we 
consider the flow near a symmetry line as described above, supposing the vortex 
velocity components (as x+x,-) to take the form: 

z = (5, - x)* F(Y)  + (x, - x)ZN+l Fl( 9) + . . . , ( 2 . 4 ~ )  

B = (x,-x)-YG(Y) + ( x , - ~ ) ~ G ~ ( g ) + .  . . , (2.46) 

m = (x,-X)-Y+NH(g)+ (x,-x)2NH1(rJ) +. . . , (2.4~) 

with y = (2, - x ) - ~  g. The powers shown are to  be determined, but we require p > 0 
to  ensure that the flow speed is less than that of the free stream, and q is related to 
the other constants here via the relation p = 1 - y  + N .  The velocity forms (2.4) 
adopted here are motivated by the expectation that the three-dimensional flow will 
remain governed by nonlinear dynamics. We also take the parameter N > 0 so that 
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the flow region undergoes singular thickening as x+x,-. With the restriction 
q > 1-27, substitution into the symmetry-line equations (2.3) yields the following 
nonlinear balances : 

dF dG 

dq dg 
-qF-Ng-+-+H = 0, 

d F d F  
dg dy 

d H d H  
dg dq 

-qF2-NgF-+G- = 0, 

- (q -1 )FH-NgF-+G-+H2 = 0, 

( 2 . 5 ~ )  

(2.5b) 

( 2 . 5 ~ )  

providing an inviscid response at  first order. So if the expressions for G ,  H from 
(2.5a, b) are inserted in (2.5c), the nonlinear equation 

+ q ( l - 2 N - q ) F 3  (gig= 0 (2.6) 

is obtained for F .  The substitution p = dF/dg the produces the linear equation 

(2.7) 
dP + q ( l - 2 N - 2 q ) F - - ( N + q ) ( I - N - q ) p  = 0 
dF 

for p ( F ) ,  which has the general solution 

where m, = l + N / q ,  m2 = m,- l / q  and a1,a2 are arbitrary constants. The solution 
depends crucially upon the values of the exponents m,,m2 and certain restrictions 
can be placed on these constants by use of the boundary conditions and other 
physical considerations. With F governed by (2.8), the velocity components G and H 
take the form 

(q /a ,  ) F(l-N/Q) a2/al) F(l-l /Q) 
G =  +NgF, H = - ( (2.9a, b) 

1 + (a2/al) F-lIQ 1 + (a2/a1) F-l'Q' 

from substitution of (2.8) into (2.5a, b) .  Thus we see that H remains single-signed 
throughout the layer provided F is positive. We now examine the behaviour of F at 
the edges of the layer, as fj+ 0 + and q+ g, - , say. Assuming that IF1 becomes large 
in these limits, the first two terms in (2.8) dominate, giving 

F ( g )  N (Nal/q)-Q/" (q1-g)-'IN as g+q , -  ( 2 . 1 0 ~ )  

and F(g)  - ( - l)Q/" (Na,/q)-Q/" rQ/"( 1 + 0(g1'lN)) as f j + O  + . (2.10b) 

Hence the sizes of the velocity components in the adjacent layers can now be 
deduced. The curved upper layer has O(1) thickness and, from (2.9), (2.10), 

ti, = D(@) + (x, - X) Dl(@) + . . . , B = N ~ , ( z ,  - z ) - ~ - '  8(@) + . . . + B(g) + . . . , (2.1 1 a, b) 

rn = w(g) + (x, - x) ( y) + . . . , y = gll(xs - x)-N + @. (2.11c, d )  
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FIGURE 2. The structure of the finite-distance separation singularity in the (z, y)-plane. Note 
that the 0(1) wall layer may be absent in some cases: see text. 

Here w + O ,  do/d#+ 1 as #+ 00, with the latter condition resulting in the effective 
boundary-layer displacement -2, growing in the form 

-&K (x , -x)-N as x+x,-. (2.12) 

Substitution of the expansions (2.1 1) into the governing equations (2 .3~-c)  yields a t  
leading order the following three equations in five unknowns: 

This leaves us free to choose two out of (0, P, @) although the profiles chosen are 
required to match with those in the layer underneath and with the outer boundary 
conditions (2.3d, e ) .  An O(1) region may also be present near the wall, with the 
profiles once again possessing some degree of arbitrariness (the flow structure 
without this extra layer is discussed a t  the end of this section). In  both O(1) regions 
the leading-order profiles are dependent upon the flow 'history', i.e. they vary 
according to the starting conditions imposed. In  the lower layer, again from (2.9), 
(2.101, 

a = o($)+ .. ., B =  p($)+. . . , t~ = @($)+ .. . , y = $, ( 2 . 1 3 ~ 4 )  

with these profiles subject to matching with the wider O ( ~ , - X ) - ~  middle layer and 
conditions at the wall, where in particular W is subject to  the TS pressure forcing. 
The main features of the flow structure described above are sketched in figure 2. 

Concerning the values of q, N ,  y ,  it can be seen from (2.10) that q/N must be an 
integer. Furthermore, since the approach to the breakdown is from upstream, the 
streamwise component must be positive, i.e. we are assuming there has been no flow 
reversal up to this point. Thus we require the condition F + co at both edges of the 
middle layer, which leads us to the conclusion that q/N must be an even positive 
integer since this is the only way in which the expressions for F in (2.10a, b)  can both 
be positive. It then follows that dF/dg-. co a t  one edge and dF/dg+ - co at the 
other. So, assuming smoothness, dF/dg must become zero at some internal point 
g = g2 say, and from (2.8) either F(g2)  = 0 or F"(J = ( -a2/al)4; only the former is 
acceptable, however, if gz is finite (Walton 1991). Hence the local behaviour is 

F - (az)P/(l-N) (( 1 - W / q ) ' J / ( l - N )  (g-gz)g/(l--N) as g+  gz f , (2.14) 

from examination of (2.8) with F assumed small. Since we require the streamwise 
velocity component to be in the positive x-direction, (2.14) requires q / ( l  -N) to be 
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an even positive integer. As the value of q / ( l  -N) is increased, the streamwise 
velocity profile in this wide middle layer becomes more rounded around the turning 
point g = g,  (compare the curves in figure 4 a ) .  In general, then, we have: 

Q 
1-N N 
-- ‘ -2L, L = 1 , 2 , 3  ,...; - = 2 K ,  K = 1 , 2 , 3  ,..., (2 .15a ,b)  

leading to the following values for the relevant parameters: 

L 2KL 2L + K -  2KL 2K+ 1 2L- 1 
2K 7 m2=- 2L ’ 

, m,=- N = -  
K + L  K+L’ !?==’ Y =  

(2.16 a-e) 

from which it can be seen that m, and m2 are both positive ; see also the limiting cases 
noted below. However, we have the additional restriction q > 1-2y  (used in 
obtaining (2 .5) ) ,  which effectively ensures that the viscous effects are only present at 
higher order. Therefore, K < 3L/(2L-  l ) ,  so that, for L = 1 ,  only K = 1 ,2  are 
permitted, implying 

(N,q) = ($, 1 )  or (a,;) ( L  = 1 ) .  (2.17) 

For L 2 2,  there is only one possible value for K (K = 1 )  in each case and so the 
constants take the values 

2L- 1 
2L 

m - 3  (L 2 2 ) .  (2.18) 
1 

1+L’  1-27 m2=-  q = 2 N ,  y=- 
L N = -  

~ S L ’  

The limiting case where L --f 00, N +  1 - , q + 2 - , m2 + 1 - , y + 0 + is also considered 
by Walton (1991), while the limiting case where L - K - q + O ,  (N,  y )+ ( i , $ ! ,  F +  
constant and (2G/F-y ) ,  (2H/F+ 1 )  acquire sine, cosine forms respectively, is in line 
with results by Dr 5. N. Timoshin (private communications, 1992). For both of the 
cases where L = 1 it is apparent that the quantity q / ( l  -N) = 2. From (2.14) we see 
that this choice leads to the second and all higher derivatives of F remaining non-zero 
at  the location where F is zero. We now examine these two cases in more detail. 

Example 1 is the case L = 1 ,  K = 1 whereN = $, q = 1 ,  y = g, m1 = $, ma.= $. In this 
case the middle layer is of O(x, - x)G thickness, the streamwise velocity is O(x, - x), 
smaller than in the adjacent layers, the spanwise velocity is O ( l ) ,  but the radial 
component is large, of order (2, -x)-; and the skin-friction response is proportional 
to (x,-x)’. Here (2 .8)  can be solved analytically for F ,  giving 

F = (az/al)  tan2 ($(a, a,); (9-0)). (2.19) 

By choosing the constant D to have the value n(ala,)-i, we can ensure F +  00 as 
g-+ 0 + , in the approach to the O(1) wall layer. In this case, the zero o f F  occurs at the 
value 9 = g2 = n(al a,)-; and the upper extreme of the layer is at = 9, = 2n/(a, a,)$, 
so that F is symmetrical about the zero point (see figure 3a, plotted for the case 
a, = a2 = 1 ) .  The corresponding expressions for the other components G, H (deduced 
from (2 .9))  are 

(2.20a) 

H = - (az /a l )  sin’ u, 2a = (a,  a,)ig-n, (2.20b) 

and these are sketched in figures 3(b )  and 3(c)  where once again we have taken 
a, = a, = 1 for convenience. 
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FIGURE 3. Middle-layer velocity profiles for the case N = i ,  q =  1 (Example 1 of $2), with 
a, = a2 = 1: (a) Streamwise velocity F ( g ) ,  the curve is described analytically by (2.19). (b) 
Radial velocity G ( g ) ,  the curve is described analytically by ( 2 . 2 0 ~ ) .  (c) Spanwise velocity H ( g ) ,  the 
curve is described analytically by (2.20b). 

Example 2 has L = 1,  K = 2 and N = 5, q = 6, y = 0, m, = and m2 = 4. Here, as in 
all cases, the streamwise velocity is smaller than in the adjacent layers, with the skin- 
friction response now proportional to (x, -x)i. Also, the spanwise velocity is small, 
O(x,-x)~, and the radial velocity is O(1) because y = 0. Overall then, the flow 
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velocities in this layer, which is of O(xs-x)-i thickness, are less than in the previous 
example, although the velocity profiles are similar in shape. In this case the equation 
for the shear takes the form 

the solution of which is (with p, = ( a z / a l ) ~ )  

dF/dg = a, Fi + a2 Fi,  (2.21) 

F = h4, (2.22) 

in implicit form, when the correct matching conditions are imposed. So F is zero at 
tj = g2 = 8n/3d3aI/3, ,  the upper extreme of the layer lies at = i!J, = 16n/3d3a1 p,, 
and a symmetric profile is obtained, as sketched in figure 4 ( a )  with a, = a2 = 1 (the 
inner curve). The similarity with the F profile of Example 1 (figure 3a) is evident : 
since m2 is the same for both cases, the behaviour of F in the vicinity of g = jj2 is 
identical. It is only as F increases to match with the larger O( 1 )  velocities in the upper 
and lower layers that the profiles begin to differ, with F increasing more rapidly in 
Example 1 owing to the larger value of m, there. However, it must be stressed that 
the actual layer thickness is much greater in Example 1 since the value of N is larger, 
and so the velocity profile is stretched out much more in this case, as can be seen from 
the figures. Sketches of the corresponding G , H  profiles for Example 2 are shown in 
figures 4(b) and 4(c) and it  can be seen that they both remain single-signed. 

It may be noted that Example 2 is a special case and in fact all the other possibilities 
(L 2 2) bear great similarity to Example 1.  For these cases we can write the shear 
equation in the form 

m / d g  = + a 2 ~ ( z m - 3 ) / 2 ( m - ~ )  (2.23) 

where m = 2,3,4, .  . . , and this equation is the governing one for all the possibilities 
apart from that of Example 2. Example 1 corresponds to the case m = 2. The 
appropriate solution of (2.23) is 

with F = (aZ/a1)2(m-l)/mS2(m-1) (2.24) 

The corresponding values of the parameters N ,  q, y are 

N = 1 - l /m, q = UV, y = l / m ,  (2.25) 

leading to a skin-friction response proportional to (xs - Thus as m increases, 
N increases (the middle-layer width increases), q increases (the streamwise and 
spanwise velocities decrease) and y decreases (radial velocity reduces to O( l)), and 
the skin friction tends to zero more rapidly. The zero of P occurs at 

- -  2n m-1 a ,Im 

y = y 2 = -(y)(<) a2 
cosec(z), 

and F is symmetrical about this zero point. The F-profile for the case m = 3 is shown 
in figure 4(a) (the outer curve) with a, = a2 = 1 without loss of generality. 

Up to this point, we have assumed the existence of an O( 1 )  wall layer in which the 
TS effects (if any) to some extent determine the nature of the flow locally. The 
inviscid middle layer is free from these effects and so the influence of the vortex-TS 



660 

8 - 

6 

7 

A .  G .  Walton and F. T .  Smith 

-___ 
_._.-.-. **.-. 

/'#' ...................................... 
i .......... i ......... 
i ..... -:;" 

2 - 

30 

i '.. 
....... ............ ..................... 

i ''.. 
i 

'... 
................................ '\. 

. -.-.-._._._. --'-~-~-~----.-.-.-.-.-. -.-.-.-.-._ 
I I I 

10 = 16~/3. \ /3  

8 -  

I 
1 

I I 

-2.1 - 1.4 -0.7 0 
H 

FIGURE 4. (a )  Middle-layer streamwise velocity profiles for the cases N = +, q = 4 
N = 4, p = 4 (outer curve) (Example 2 of $2). The inner curve is given analytically by (2.22)'with 
a, = a2 = 1 .  ( b ,  c) Middle-layer ( b )  radial and (c) spanwise velocity profiles for the case N = 4, 
q = $ (Example 2 of $2).  

interaction is necessarily weak overall, and indeed this finite-distance separation 
could occur even in the absence of the TS waves. If the wall layer is absent, and in 
effect this middle layer is directly adjacent to the wall, the expansions in the buffer 
zone are as in (2.4) with q = 1 -Nfrom (2.14) with g2 replaced by zero in effect, and 

7 

(inner curve) and 
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hence y = 2N. Thus the shear equation for F now takes the form dF/dij = a, Fl/‘J+a,, 
so that F is regular only if l / q  is a positive integer m( 2 2). The general solution for 
q(F) is then 

(2.26) 

with f = (al/az)l’mF. The TS forcing affects the second-order terms (F,, G,,  HI) in 
expansions (2.4). This type of structure possesses a lesser degree of arbitrariness than 
when the extra O( 1) layer is present. In  particular, it gives very definite predictions 
for the x-dependence of the vortex skin friction ( cc (x, - 2)) and the TS wavenumber 
(cc (xS-x)-l). Also the TS pressure amplitude is predicted to decrease like ( X , - - X ) ~ + ~  

(with N = 1 - l / m  for m = 2 , 3 , 4 , .  . .) as the wavenumber increases, and in principle 
this feature should be relatively easy to observe in space-marching calculations (cf. 
Hall & Smith 1991, and comments a t  the end of this section) if this flow structure 
does indeed develop. 

l lm  f dq y = L p )  - I,---+, m = 2 , 3 , 4  ..., 
a2 a1 

2.2. The Jinite-distance attachment singularity 
The second option concerns the possibility that a strong attachment takes place in 
the flow at a finite x( = xo, say) downstream. Once again we consider the flow near a 
symmetry line z = zo. In this situation the flow velocities assume the form 

ti= F,(Y)+ ..., B =  ( X ~ - X ) - ~ G , ( Y ) +  ..., t i j= (~ , -x ) -~~H, (Y)+  ..., 
(2.27 a-c) 

as x+xo-,  with the exponent A satisfying A > $. So the cross-stream flow 
(originating from the Go, Ha terms) dominates, with the nonlinear balances 

y = (x,-x)A Y, (2.27a) 

d2Ho 
dY2 

(2.28 a-c) 
dF d2Fo dHo 

dY dY dY2’ dY 
Go-+Hi  = - dG0 -+Ha = 0, Go> = - 

holding, from substitution of (2.27) into the symmetry-line equations. The 
appropriate solution has 

- l) ,  Go = B(ePBY- l ) ,  Ha = B2e-BY, (2.29~-c) F - - (el-e-BY 1 
O-B 

where B > 0. From (2.29), the skin-friction response is of the singular form 

X, cc ( X ~ - X ) - ~  as x + x o .  (2.30) 

Thus, to satisfy the spanwise slip condition, the TS pressure must become singular 
also, acquiring the dependence 

po - p, cc as x+xo, (2.31) 

with the TS wavenumber a remaining O(1); we see therefore that the constant B 
must satisfy the relation 

from (2.29c), (2.39). In (2.32), the x-dependence has been removed so that the 
pressure and skin-friction terms are now constants. Here, since Ha is positive, the 
spanwise flow is directed away from the symmetry line z = zo, and from ( 2 . 2 9 ~ )  the 
radial component is negative, indicating that fluid is being forced towards the wall 
(figure 5 )  ; both components grow in strength as x + xo. 
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z <  

2 0  

FIQURE 5. The form of the finite-distance attachment singularity in the (y, +plane. 

It will be interesting to see whether either (or both) of the canonical forms 
described in this section are observed in further numerical computations of the full 
space-marching governing equations. Computations for the interaction in an external 
boundary-layer flow (Hall & Smith 1991) tend to suggest a singularity occurring at 
a finite distance with, in particular, rapid growth of the TS wavenumber a being 
observed. Recalling the growth of a predicted earlier, comparisons could be drawn 
between Hall & Smith's numerical singularity and the lift-off behaviour of $2.1, but 
more computations need to be performed with a greater number of Fourier modes 
before any firm conclusions can be drawn on this subject. See also the comparisons 
in $ 5  below, however. Again, recent computations by Dr S. N. Timoshin point quite 
firmly to the proposed lift-off behaviour, in particular for the case q - + O  mentioned 
earlier. 

Flow separation and attachment structures analogous with those described in this 
section are also possible for the case where the vortex flow possesses time- 
dependence, and these finite-time singularities are discussed in the Appendix. 

3. The similarity form, and some analytical properties 
In  the similarity form the velocities are expressed as 

u = dU(7, z ) ,  21 = x-iv(7, z ) ,  w = x-iW(7, z ) ,  (3.la-c) 

with 7 = y/xi of O ( l ) ,  yielding an exact solution of the system (2.1) with once again, 
a/at = 0 in (2.la-c). Although strictly valid for all x, this form seems more likely to 
be acquired downstream, as the effects of the particular starting conditions become 
less significant. The quantities U,  V and W then satisfy the nonlinear equations 

( 3 . 2 ~ )  

In addition, (2.1) suggests writing 

A, = A(%),  p = d f y z ) ,  A? = x-"(P). (3.3 a-c) 

Note here that the x-dependence of p in (3.3b) is necessary in order to maintain the 
effect of the wave on the vortex via (2 . lg) .  The form for A? in ( 3 . 3 ~ )  then follows 
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straight from (2.1i), with the wavenumber a independent of x at leading order (in 
fact (3.3b, c )  also apply for compressible boundary layers, jets, channel flows, and so 
on). The boundary conditions on (3.2) take the form 

W+O as 7-zo0, 
au aU -+A@), W+-Q(z) as 7 + 0 + ,  -+l, 
a7 a7 

(3.4a-d) 
with A(z )  unknown, where Q is given by 

Q = - { c x ~ - ( P P * ) + $ ( ~ ~ ) } ,  1 d 
a2A2 dz 

and the TS pressure equation is, in general form, 

A' 
h 

p"+--(z)p'-a2P = JS(Z)*(P). 

(3.5) 

Here 3, Js are defined in the same way as 9, J in $2 except that A, is replaced by 
A, so that the z-dependence has been removed (but see also $ 5  below). The prime in 
(3.6) denotes differentiation with respect to z. Numerical solutions of the above 
system are described in $4 below, but before discussing them we consider for 
guidance certain linear and nonlinear properties. 

As a start, an exact solution is the uniform shear flow U = 7, V = W = 0, P = 
constant. So, for small perturbations, 

U = 7 +su,(q) cosnPz+. . . , V = m,(7) cosnPz+. . . , 
W = ew,(v) sin n/3Z + . . . , (3.7a-c) 

P =po+Epp,cosn/Iz+ ..., = 9+sHncosnPz, (3.74 e) 

Substitution into the vortex equations (3.2) then provides the linear viscous 
where the spanwise wavenumber n is an integer, and E < 1. 

balances 

( 3 . 8 ~ )  

The general solution, with x = )q3, has 

where K is arbitrary, and the constant Q, is defmed by the expansion for the spanwise 
slip velocity Q = EQ, sinn/3z+. . . . By demanding that the velocity w, tends to zero 
in an exponential rather than algebraic manner (since otherwise the latter would be 
present for all x), we can neglect the second term in (3.9). Then (3.8a, b) yield the 
equation d2u,/dy2 = (nPQ,q+Dn) exp (-&I").  The no-slip condition in (3.8b) then 
implies that D, = 0, while the outer condition requires the shear correction du,ldy 
to vanish at infinity. Hence upon integration 

-3~17Q)7+3(e-7*/0-1)+7 nPQ,, vn = npQn7, (3.10a, b) 
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where T is the gamma function. The resulting skin friction h has the form 

A .  G. Walton and F .  T .  Smith 

A = 1 - e$r($) npQ, cos npz + . . . . (3.11) 

In  addition to being used for comparisons later in the paper, applications of the 
above to pipe entry flow are considered by Walton (1991). 

Another starting solution is po  = 2 = 0, however, with both the TS pressure and 
displacement then reduced to O(e). In  this case, the TS wave forces a vortex motion 
at  O(e2) and the velocities take the form 

U = + e2 - 3iT($) 7 + 3(e-v33/9 - 1 ) + 7 s e-s33/B ds 2np&, cos 2npz + . . . , 
( 3 . 1 2 ~ )  

(3.12 b, c)  

where &, = np((n,!3)2-a2)/a2. The most notable change from the solution with O(1) 
TS pressure, apart from the reduction in size of the velocities, is the doubling of the 
spanwise wavenumber. The appropriate relation linking the frequency and 
wavenumber to the distance downstream is discussed by Walton (1991), along with 
other points for entry flow. 

Next, we address the symmetry-line version of the similarity solution. A 
considerable simplification can be made by considering the flow near a symmetry line 
z = zo, say (cf. $2), where 

[u, V ,  w , P ]  = [u(7), v(7), (z-zo) W ( ~ ) , P , + ( ~ - ~ o ) 2 ~ 2 ] [ 1 + O ( z - z ~ ) ] ,  ( 3 . 1 3 ~ )  

gs = ~ + o ( z - z o ) ,  = *+O(z-zo)  (3.13b, c) 

for z-zo < 1.  The vortex equations (3.2) yield here the nonlinear ordinary differential 
equations 

( s: 1 
v = c22np&, 7 cos Znpz + . . . , W = - c2&, e-y3l9 sin 2npz + . . . , 

( 3 . 1 4 ~ )  

subject to the boundary conditions (with x unknown) 

Here the spanwise slip velocity is related to the TS pressure via 

Sl',2,12 + 2or2(P0',p,* + c.c.) 
Q =  

a 2 1 2  
3 (3.16) 

and the pressure terms e,P2 are related by the symmetry-line version of the TS 
pressure equation : 

2P2-a2E = 4%. (3.17) 

The vortex equations (3.14) with boundary conditions (3.15) constitute a numerical 
problem that can be solved relatively easily using a fourth-order Runge-Kutta 
scheme, as follows. We rescale 

0 = xgG($), = x$c($), = xi&($), @ = xgQ, 7 = x-ii, (3.18~-e) 
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FIQURE 6. Plot of induced vortex skin friction x versus spanwise slip velocity -Q for the 

symmetry-line similarity solution of the vortex-wave interaction equations ($3). 

after which the vortex equations remain unchanged but now the accompanying 
boundary conditions are 

(3.19a-e) 

Thus we now have an initial-value problem in which we can specify Q and iterate 
upon the value of dZi,/dij at $ = 0 in order to make Zi, vanish at infinity. For each 
value of 0, therefore, there corresponds a value of h (not necessarily unique) which 
can be deduced from the outer conditions. The results of this computation are 
presented in figure 6, from which it can be seen that no solutions could be found for 
spanwise slip velocities Q 2 Qo, where 0, w 0.097. Also, the region of the curve 
around the point h = 1,  Q = 0 can be described by a linear perturbation to the basic 
shear flow 4 = i ,  giving x = 1 - 3 f r ( $ ) Q  for 0 6 1 ,  ( 3 .20 )  

cf. above. In  addition, the numerical results indicate two solutions for x for a given 
Q, corresponding to differing values of d&/dy” a t  i j  = 0 which both give the required 
decay in Zi, at infinity. It is interesting that this non-uniqueness includes the case of 
no wave forcing, Q = 0. Further, as Q -+ - co there are two distinct branches on which 
h + co , as described below. 

First we tackle the upper branch, where the approach to infinity is more rapid. The 
flow structure there comprises an inner nonlinear viscous region and a much wider 
nonlinear inviscid outer one. The inner region has thickness O(x-;) and 

[4, 6, Zi,, Q] = [h-4Zii, xk, hhz, Xi&]+. . . , (3.21 a-e) 
- 

i = A-fij, 
so that the vortex flow is governed by 

(3.22 a-c) 

The outer conditions in (3.19) apply to the outer inviscid region. The appropriate 
solution of (3 .22)  is 
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where yo2 = -& > 0 is a constant to be found. In the outer region, of thickness O(@, 
therefore 

( 3 . 2 4 ~ 4 )  [&, 6, $1 = [h-ju*, A h * ,  X-iw*] + . . . , = h$*, 

with the flow velocities satisfying the inviscid balances 

gu*-$s*u*’+v*’+w* = 0, HU 1 *2-$s*u*u*’+21*u*’ = 0 , (3.25a, b )  

- QU*W* -+q*u*w*I + 2)*w*l + w*2 = 0, (3.25 c) 

with the prime denoting differentiating with respect to q*. The appropriate matching 
conditions with the inner region are u*(O) = (e- l)/y,, v*(O) = -yo,  while a t  the outer 
extremes the boundary conditions require u*’( a) = 1 ,  w*( co) = 0. Now, using 
expressions for v*, w* in terms of u* from (3.25a, b ) ,  the spanwise momentum balance 
( 3 . 2 5 ~ )  results in the nonlinear equation 

4u*3u*”u*’2 + u*4u*”’u*’ - u*4u*”2 = 0 (3.26) 

for u*(q*). The substitution 9 = u*‘, however, reduces (3.26) to the linear equation 
u* d29/du*’+ 4d9/du* = 0, the appropriate solution being 

9 = du*/dq* = 1 -a;/u*, (3.27) 

in view of the outer conditions. Here a, is an unknown constant. The implicit solution 
for u*(q*) is therefore 

u*-a, 2u* +a, 
q*+K, = u*+&, I - 4 3  tan-’{ a, d3 }], (U*2+aou*+a:)f 

(3.28) 

with application of the inner conditions determining the constant KO.  Hence the 
following relation between yo and a, is obtained : 

(e- 1)3 (e- 1)2 
a3 0 -  - [ 1 -4. (3.29) 

On the other hand, use of (3.27) in (3.25a, b )  gives the spanwise velocity component 

before) we require as rapid a decay in w* as possible, the constant a, must be zero. 
Thus, from (3.29), 

= (e-l);/3: (3.30) 

fixes the spanwise slip velocity -&. This value agrees very well with that obtained 
numerically. In  particular, the numerical results a t  increasing h-values (figure 6) 

w * = - 3  a,u * /(U*’-U;) - -ai/r*2 as s*+ cc from the outer constraints. Since (as 

indicate the behaviour 
&(O) - 0.94h0-674 

which compares closely with the relation 

(e- i);-* 
$(0) - 

35 

as h+co 

as h + a  

(3.31) 

(3.32) 

deduced from the analysis above. 

appropriate expansions are 
Second, along the lower branch, the inner zone is again of thickness O(h-;) and the 

& = X-ia 1 ( -  ql)+h-fa2(ql)+ ..., 6 = hi01(ql)+h-102(ql)+..., (3.33a, b )  

1 ( “  q l )  + h-h2(q1) + . . . , fj = h-57 1> (3.33c, a) - 1  
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so that the first terms are the same as on the lower branch, but we now have an O( 1) 
correction to dzi,/d?;l. Substitution into the vortex equations leaves (G1, el, a,) 
satisfying the same equations as (.ii,fi,G) in (3.23). The appropriate solution is 
effectively the same in this case, namely 

- 1  u1 = - (exp(I-e-ylfl)-I), fil = yl(e-ylfl-l), G1 = yle-xfi. (3.34a-c) 
Y1 

The correction terms (C,, 4, 6,) satisfy the viscous balances 

f.iil-fql.ii;+v";++, = 0, W - 1 "  3 1  3 7 1 1 1  .ii .ii'+v" 2 1  .ii'+v" 1 2  .ii' = C;, (3.35a, b) 

(3.35 c) 

where .ii,(O) = c2(0) = 0 in order to satisfy the no-slip condition and the prime now 
denotes differentiation with respect to ql. After some working we obtain the 
following differential equation for G2(q1) : 

-gl a1 --& .iil a; + c1 a; + c2 a; -k 2221, a, = a;, 

5y-c fi""-26 f i ' - y  6 v" - %  6 -1- 
1 2  1 2 1 1 2 - 3  1 1 3r]1Y1.iila1-~1a1.ii',+~1.ii~, (3'36) 

where the right-hand side is known from (3.34) and can be written as 

(exp (1 -e-ylql)- 1)e-y1q1[$y1-$qly;] 

+exp(I -e-ylf1-y1ql) [ble-ylfl-+ 3 1  -+jly~e-Ylq~]. 

Therefore, in the outer reaches of this inner region, both the radial shear and the 
spanwise velocity corrections tend to h i t e  limits, with 

as ij1403. 
e-1 

3Y I 
(3.37a, b) 

This implies the following expansions in the O ( 2 )  outer region: 
- 1  - 1  

Q = h-§u* (q:)+X%:(q:)+ ..., 8 = h-§v:(r:)+X~v:(rl:)+..., (3.38a, b) 

zi, = X-tw:(?j:)+X-~wwz*(q:)+ ..., f =&I:, (3.38~) 

and the dominant terms then satisfy the same inviscid balances as (u*, v*, w*) on the 
upper branch. The matching conditions in the outer region are u:(O) = (e-l)/yl, 
v:(O) = - yl, w:(O) = -2(e- 1)/3y1, along with the outer boundary conditions 
du:/dy: ( m )  = 1, W:(CO) = 0. The solution for u: follows as in (3.26)ff., giving 

where, as on the upper branch, the constant K ,  is determined by the inner 
constraints. Hence we find 

whereupon the governing equations yield the relation 

(3.40) 

(3.41) 

22 FLY 244 
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The solution for w: is the same as on the lower branch, i.e. wr = -b3a* 1 11(uT3--b:)> 
and application of the matching conditions implies, after some simplification, 

b: = 2(e- 1)3/5yi. (3.42) 

A .  G .  Walton and F .  T.  Smith 

Finally, comparison of (3.41) and (3.42) fixes the value 

7: = (e - 1 )4 (3.43) 

~ ( 0 )  - ($(e- i $Z  as X+ co. (3.44) 

for the spanwise slip velocity and in particular gives the dependence 

This agrees well with the numerically determined behaviour on the lower branch 
(figure 6) as the skin friction becomes large. 

4. Computational study of the full similarity problem 
A numerical investigation of the system (3.2), (3.4)-(3.6) is summarized in this 

section. We deal with the vortex part first and write the velocities in the Fourier- 
series form 

M 

U = U,,(V)+ C ~ i m ( ~ ) e i m 2 + c . c . ,  (4.1) 
m = l  

and so on, so that periodicity of 2n in z is assumed. Here M is the number of modes 
taken in the computation, and C.C. denotes the complex conjugate. Substitution into 
(3.2) leads to  a set of nonlinear ordinary differential equations for the vortex 
velocities. Two different methods were used to  solve these (see Walton 1991), the 
results of which agree well. The first is a shooting method allied to a fourth-order 
RungeKutta  scheme. This proved a not very efficient method, and in fact at large 
TS amplitudes the method struggled to obtain a converged solution. That prompted 
the second approach, using a finite-difference representation for the vortex equations. 
This method has a number of advantages over the Runge-Kutta scheme: the mesh 
required can be considerably coarser than the step size needed for the shooting 
method, so that computing time is shortened as a result; also, to obtain a new value 
for each velocity component, each equation need only be solved once, compared to 
three times in the first method. Thus i t  would seem that the second method is more 
appropriate for the calculations and, indeed, the failure of the first method as the TS 
amplitude is increased seemed to confirm this. Next, concerning the method of 
solution for the TS pressure equation the functions 8, were found to  require some 
care. By differentiation and some manipulation, they can be shown to  be governed 
by the nonlinear equations 

(‘5+d)d--2@2-@-([+d)zd = 0, ( 4 . 2 ~ )  

~ z ( ~ - ~ ) & ” - ( 2 & - ( ~ / ) z - ( @ ’ ( 6 ~ ~ -  i)+(3(@-4)z+(2@-1)& = 0, (4.2b) 

with @(&I = ss+g, g(6) = (iaA)-igs, 6 = - i h / ( a A ) i  

subject to  the starting conditions 

I Ai’(0) d d  Ai(0) Ai’(0) d@ Ai‘(0) 
; @ ( O )  = o ,  -(O) =-- 

d t  2Ai(0). 
3(0) = - - ( O )  = 

X ( 0 )  ’ d6 
(4.2 C-f) 

Here Ai(0) z 0.35503, Ai’(0) x -0.25882, X ( 0 )  = f. It is then possible to determine 
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&(6), g(6) from (4.2u-f), for all 6, by use of a Runge-Kutta scheme, without needing 
to calculate explicitly the Airy function and related functions in the TS pressure 
equation. The rest of this part of the procedure is described in Walton (1991). 

Suitable initial guesses for the skin-friction distribution A ( z ) ,  the wavenumber a 
and the frequency D, for a given pressure amplitude IP1, were obtained as follows. For 
simplicity here the pressure-displacement law is taken to be 

P(z)  = a2Xs, (4.3) 

as a start. If we now seek a TS pressure distribution of the form P = cos kz and 
assume initially that the skin-friction distribution is constant, i.e. A ( z )  = 1, the 
second term in (3.6) vanishes, leaving the relation - k2 -a2 = ib-@L[) and implying 
that i&i?(g) must be real. This is only possible if 6 x -2.298ii and bS(6) x - 1.00087 
(e.g. Reid 1965), which results in the following equation for the wavenumber a: 
1.00087a-: = a 2 + k 2 .  The solution has a x 0.506 for k = 1, and the corresponding 
frequency is then deduced from above to be D x 1.459. For small TS amplitudes, a 
uniform skin friction is a good approximation, and so the numerical procedure is 
initiated with the values a = 0.506, D = 1.459, A = 1 and @ 1. Once a solution is 
found, these new estimates can be used as the initial guesses for the solution at larger 
[PI. In  this manner the effect on the solution of increasing the TS pressure amplitudes 
can be investigated. The results obtained can then be compared with the analysis in 
$3  for the flow near a symmetry line: see also the next section. 

5. Numerical results, comparisons with the analysis, and further comments 
Figure 7 follows the development of the vortex skin friction at the spanwise 

position z = 0 as the TS pressure amplitude (PI is increased. The different curves 
correspond to the computations being performed with different numbers of Fourier 
modes. By examining the effect on the solution of increasing A4 it can be seen that 
a large number of Fourier coefficients are activated significantly. An investigation of 
the behaviour of the solution with M greater than 12 was beyond the capabilities of 
the available computing resources. A main feature of all the computations is the 
failure of the numerical method to provide a converged solution once the TS pressure 
amplitude is increased beyond a certain value, which decreases as the mode number 
M is increased. It is difficult to know whether to attribute this breakdown to  a sudden 
change in the behaviour of the solution, or to  accept that some parameter in the 
problem is now out of the range for which this particular numerical method can 
obtain a converged solution. In  other words, is this breakdown purely a numerical 
artifact or is there some underlying physical reason for its occurrence here 1 The 
former may be expected because, as mentioned earlier, the shooting method 
originally employed to  solve the vortex equations fails to provide a solution when (PI 
reaches a certain value, but the solution given by the second method proceeds 
through this point smoothly with no change in the physical nature of the solution 
appearing to take place. On the other hand, an alternative explanation can be put 
forward by comparing figure 7 with the symmetry-line curve of figure 6. The ordinates 
of these two plots are roughly comparable as they both represent the degree of 
spanwise forcing present. It is possible that at the point of breakdown the curves in 
figure 7 are trying to turn back on themselves in a fashion similar to that exhibited 
in figure 6. However, no curve analogous to the lower branch of figure 6 could be 
found, although many attempts were made to confirm its existence ; and there is in 
fact a different explanation, as described below. 

22-2 
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FIGURE 7. Plots of induced vortex skin friction h at 2 = 0 versus the square of the TS pressure 
amplitude lPI2 for different numbers of Fourier modes (M). The curve denoted ‘linear’ is obtained 
from the analysis of 93. 
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FIGURE 8. (a) TS wavenumber u and (b) TS frequency L?, versus pressure amplitude IPI 
with the undisturbed TS pressure given by P = cos z. 

PI 

The remaining figures shown are for a mode number M of 8, which appears large 
enough to capture most of the z-dependence without rendering the calculations too 
expensive to perform. Figure 8 displays the increase of TS wavenumber a and 
frequency S2 as IPI is increased. No irregular behaviour of these parameters is 

(b) 
2- 
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FIGURE 9. Plot of induced vortex skin friction h(z) versus TS pressure amplitude IPI 
with a and S2 given in figure 8(a ,  b ) .  

FIGURE 10. Plot of (a) the real part and ( b )  the imaginary part of TS pressure versus TS pressure 
amplitude [PI with a and S2 given in figure 8(a, b ) .  

observed as the breakdown point IPI x 0.2 is approached. Larger values of k 
correspond to smaller a, 0,  but these have not been investigated to any great extent 
as increasing k increases the number of non-zero Fourier modes, thus requiring the 
parameter M to be larger in the computations. 
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FIGURE 11. Plot of spanwise slip velocity - & ( z )  versus TS pressure amplitude [PI 
with a and l2 given in figure 8(a. b). 

FIGURE 12. Plot of boundary-layer displacement --A&) versus TS pressure 
amplitude IP( with a and 52 given in figure 8(a, b).  

Figure 9 shows the behaviour of the skin-friction distribution, and this figure is 
essentially a three-dimensional representation of the M = 8 curve in figure 7. A 
feature of figure 9 is the relatively sudden increase in the skin friction near the 
position z = 110"; this behaviour may be related to that occurring on one of the 
branches of figure 6 as Q+- 00, see also below. Again, we should emphasize the 
asymmetry of the breakdown, which suggests that i t  is not due to demanding the 
solution to be even about z = 180". 

Figure 10 shows the behaviour of the normalized TS pressure (with P(0)  = 1) as the 
amplitude is increased. It can be seen from these plots that the TS pressure retains 
its initial cosine component, but also acquires a sine component (plotted in figure 
lob) which grows rapidly in magnitude as the numerical breakdown is approached. 

Figure 11 shows the response of the spanwise slip velocity - &(z) as (PI is increased. 
The effective boundary-layer displacement - A, ( z ) ,  defined by 

UNT,I+A,(Z)  as r+00, (5.1) 

is plotted in figure 12 and indicates that there is a possibility of imminent 
'separation' occurring around z = 0" and 180", where the spanwise slip velocity is 
small. Figure 13 presents the velocity profiles at the particular TS pressure amplitude 
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(a) 

FIGURE 13. Plot of (a )  streamwise velocity component U(v,  z ) ,  ( b )  radial velocity component 
V ( v ,  z )  and (c) spanwise velocity component W ( v ,  z )  at TS pressure amplitude IP( = 0.2 with a and 
l2 given in figure 8 ( a ,  b ) .  

JPI = 0.2. It can be seen that near z = O", 180" the radial velocity V is large and 
positive, implying that fluid is being forced away from the wall, while the streamwise 
component U is a minimum at these spanwise locations. It is felt that the near- 
separated flow behaviour here can be described by an analysis very similar to that 
presented in $2.1. 
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In  contrast, near the location z = 110”, the displacement -A,(z)  reaches its 
maximum negative value and the skin friction h(z) its maximum positive value, 
indicating that the flow is becoming strongly ‘attached’ as IPI is increased. In this 
case we may expect a local solution of the form described in $3 for the upper or lower 
branch to be applicable. Further evidence for this is the fact that, at  z = 110’, both 
U and V are observed to attain their maximum magnitudes and the spanwise slip 
velocity passes through zero, while its derivative with respect to z is a maximum (see 
figure 11) .  according to the analysis of $3, and of $2.2 which also applies in the 
present similarity case exactly to leading order (because of the dominance of the 
cross-plane dependence over the streamwise dependence in both of the cases), the 
flow solution near the wall has the form 

- w = ( z - z o ) ~ ~ ~ ~ e - y f + O ( z - z o ) 2 ,  7 =A+?, (5.2c, d )  

where (z-z,,) Q 1,  yo is given in (3.30) and 2 is the value of h(z) at z = zo = 110’. This 
behaviour agrees qualitatively with that obtained numerically and shown graphically 
in figure 13. 

In  summary here, then, solutions of the similarity form of the vortex-TS 
interaction have been found ($03-5), for real values of the TS wavenumber a and 
frequency L2 as required, with the induced vortex skin friction and TS pressure 
acquiring z-dependent forms as the TS pressure amplitude IPI is increased. The 
numerical method used ($4) breaks down at a certain value of [PI, and no solutions 
have been found beyond this point. However, the existing numerical results indicate 
the possibilities of attachment and separation singularities occurring in the flow 
solutions a t  certain spanwise positions, as IPI is increased, these singularities being 
analogous with those described in $52.1, 2.2 (and see $3)  for the spatial-marching 
context. 

Of especial interest is the separation or lift-off singularity of $2.1 for the 
longitudinal vortex motion. This is largely independent of the wave contribution, in 
local terms, granted that the wave contribution (acting as a surface slip) has already 
performed the important task of ‘tripping’ the flow from its attached two- 
dimensional state, upstream in the spatial setting or at earlier times in the temporal 
setting, or both. In  the combined spatial-temporal case the next step that occurs, in 
faster time- and lengthscales locally, is associated with nonlinear inner-outer 
interaction between the displacement and the induced pressure due to the outer flow, 
as described by Peridier, Smith & Walker (1991 a ,  b )  in the two-dimensional version. 
This inner-outer pressure-displacement interaction leads in most circumstances to 
the finite-time breakup of Smith (1988), as Peridier et al.’s (1991b) computational 
studies show ; see also Hoyle (1991) for the three-dimensional version. The next new 
step then is discussed by Hoyle et al. (1991, 1992)’ who find that significant normal 
pressure gradients come into operation, locally again. These can produce a further 
new step in which an increasingly strong azimuthal vortex is formed by winding up 
locally. This azimuthal vortex may represent the so-called ‘first spike’ of strong 
transition according to Hoyle et al. (1991, 1992), and indeed recent comparisons (by 
Smith & Bowles 1992) between Smith’s (1988) theory and Nishioka et al.’s (1979) 
experiments show close agreement quantitatively concerning the occurrence of the 
first spike. (Recent comparisons also indicating good agreement with experiments on 
other related aspects of transition are given by Stewart & Smith 1992; Kachanov, 
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Ryzhov & Smith 1992.) So the lift-off separation singularity of 52.1 for vortex/wave 
interactions provides a means for small input three-dimensional disturbances to 
cause a cascade of scales leading to longitudinal vortex lift-off and then strong 
spanwise vortex formation. The repercussions of the alternative attaching-flow 
singularity in $2.2 remain to be considered. 

In the boundary-layer application the above applies for all h in the range 
1 4 h 4 Re:, as described just below ( l . l ) ,  but also for h of O(1) where the vortex 
system gives the mean flow throughout the boundary layer. 

Comments by the referees and by Dr S. N. Timoshin, and support from SERC (for 
A.G. W. and for computing facilities) and AFOSR (grant no. 89-0475), are gratefully 
acknowledged. 

Appendix. On the slow-temporal case 
In $ 2  we concentrated upon forms for the nonlinear interaction in which the only 

timescale present is the fast one due to the TS waves : in other words we took a/a t  to 
be identically zero in (2.1 a-c). However, similar separation and attachment 
singularities are also possible ultimate forms for the case where the vortex flow 
operates on a slow timescale with the slow streamwise scale now absent. Once again, 
the analysis here is presented for the flow near a symmetry line z = zo so that the 
governing equations are ( 2 . 3 ~ - h )  with a /ax  identically zero, but with &/at and a.iii/at 
terms added to the left-hand sides of (2.3b, c )  respectively. These finite-time 
singularities are discussed briefly below. 

A .  1 .  The Jinite-time separation singularity 
As t + t ,  - , we suppose the vortex components to take the form 

a = ( t , - t )QF(g)+ .  . . , B= ( t , - t ) -"G(g)+.  .. , .iii = ( t , - t ) -"+NH(g)+.  . . , 
(A la-c) 

with y = ( t ,  - t ) - N  g. For a leading-order nonlinear inviscid response we require 
N = y- 1 > -&. With this inequality holding, substitution of (A 1 )  into the modified 
form of (2 .3)  yields the balances 

dG d F d F  d H d H  
-+H=O, -qF-Ng-+G- = 0, H-Ng-+GG++2 = 0. 
dg dg dg dg dg 

( A  2a-c)  

In this case there is no restriction upon the value of q (other than it must be positive) 
because the streamwise velocity component F is only present in (A 2b) ,  and as a 
linear term. 

The analysis of ( A  2)  can now proceed in an analogous fashion to that of ( 2 . 5 ~ - c )  
in $2.1, with the vortex shear once again found to be governed by (2.8). The 
corresponding expressions for G, H differ from those in (2.9) by a factor F because the 
streamwise velocity component is absent from (A 2c).  The remainder of the analysis 
proceeds as in $2.1, except that the restriction q > 1 - 2 y  is not in effect here; the 
examples outlined there are also relevant to this case. 

A.2. The Jinite-time attachment singularity 
Here we suppose the flow solution to acquire the form 

I E = Fo(Y) +. . . , B = ( t0- t ) -=Go(Y) +. . . , 
w =  (tn-t)-2aHn(Y)+ ..., y = ( t , - t )aY,  

( A  3a-d)  
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as t + to - , with a > t .  Substitution of these expansions into the modified form of (2.3) 
the yields the nonlinear, cross-flow-dominated equations (2.28) once again. The 
solutions of these equations proceeds in an identical manner to that of $2.2. 
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